0
返回出卷网首页
1. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)
求∠F的度数;
(2)
若CD=2,求DF的长.
【考点】
等边三角形的判定与性质; 含30°角的直角三角形;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,在Rt△ABC中,∠ACB=90°,AC=
,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.
(1)
求证:点E到AC的距离为一个常数;
(2)
若AD=
,当a=2时,求T的值;
(3)
若点D运动到AC的中点处,请用含a的代数式表示T.
综合题
普通
2. 已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)
如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=
;
(2)
如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;
(3)
如图3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之间距离是否有最大值?如有求出最大值;若不存在,说明理由.
综合题
困难
3. 已知:在平面直角坐标系中,抛物线
交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)
求抛物线的解析式及顶点D的坐标.
(2)
如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)
如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
综合题
困难
1. 如图,以线段
为直径作
, 交射线
于点
,
平分
交
于点
, 过点
作直线
于点
, 交
的延长线于点
. 连接
并延长交
于点
.
(1)
求证:直线
是
的切线;
(2)
求证:
;
(3)
若
,
, 求
的长.
综合题
普通
2. 在
中,
.有一个锐角为
,
.若点P在直线
上(不与点A、B重合),且
,则
的长为
.
填空题
普通
3. 已知
是
的直径,点A,点B是
上的两个点,连接
, 点D,点E分别是半径
的中点,连接
, 且
.
(1)
如图1,求证:
;
(2)
如图2,延长
交
于点F,若
, 求证:
;
(3)
如图3,在(2)的条件下,点G是
上一点,连接
, 若
,
, 求
的长.
综合题
普通