已知:如图,AM,BN,CP是△ABC的三条角平分线.
求证:AM、BN、CP交于一点.
证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.
∵O是∠BAC角平分线AM上的一点( ),
∴OE=OF( ).
同理,OD=OF.
∴OD=OE( ).
∵CP是∠ACB的平分线( ),
∴O在CP上( ).
因此,AM,BN,CP交于一点.
如图①,在四边形中, , 平分 , 于求证: .
证明:
如图②:过点作 , 垂足为点 .
,
, (①____________)
平分 , ,
(②______)
(③______)
在和中
④______(⑤______)
(⑥____________)
AI
①在旋转过程中,若边 , 求t的值.
②若在三角形绕点B旋转的同时,三角形绕点E以每秒1度的速度按顺时针方向旋转(C,D的对应点为H,K),两个三角形同时停止运动.请直接写出当的角平分线与的角平分线平行时t的值.
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于 的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果 , , 的面积为18,则 的面积为.