0
返回出卷网首页
【基础练】人教版数学八年级下学期 18.2.3 正方形
共 23 题 ; 9人浏览 ; 八年级下学期
2025-05-14
发布测评
/
在线自测
一、选择题(共12题,共36分)
1. (2024八下·天河期末)下列说法正确的是( )
A.
四条边相等的四边形是矩形
B.
有一个角是
的平行四边形是正方形
C.
对角线互相垂直平分的四边形是菱形
D.
一组对边平行,另一组对边相等的四边形是平行四边形
单选题
普通
2. (2017八下·港南期中)平行四边形、矩形、菱形、正方形都具有的性质是( )
A.
对角线互相平分
B.
对角线互相垂直
C.
对角线相等
D.
对角线互相垂直平分且相等
单选题
普通
3. (2024八下·花都期中)在四边形
中,
, 如果添加一个条件,即可得出四边形
是正方形,那么这个条件可以是( )
A.
B.
C.
D.
单选题
普通
4. (2024八下·中山期中)如图,在四边形
ABCD
中,
O
是对角线的交点,能判定这个四边形是正方形的是( )
A.
,
,
B.
,
C.
,
D.
,
,
单选题
普通
5. (2015八下·六合期中)正方形面积为36,则对角线的长为( )
A.
6
B.
6
C.
9
D.
9
单选题
普通
6. (2024八下·珠海期中)在正方形
中,E是对角线
上一点,且
, 则
的度数是( )
A.
B.
C.
D.
单选题
普通
7. (2024八下·花都期末)如图,在
中,
. 若
, 则正方形ADEC和正方形BCFG的面积和为( )
A.
80
B.
100
C.
200
D.
无法确定
单选题
容易
8. (2023八下·阳西期末)如图,在边长为3的正方形ABCD中,
, 则BF的长是( )
A.
2
B.
C.
D.
1
单选题
普通
9. (2024八下·中山期中)如图,在平面直角坐标系中,正方形ABCD的顶点D在y轴上,A(-3,0),B(1,b),则正方形ABCD的面积为( )
A.
34
B.
25
C.
20
D.
16
单选题
普通
10. (2024八下·荔湾期中)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.
1
B.
C.
2
D.
单选题
普通
11. (2019八下·东台月考)如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )
A.
2
B.
4
C.
4
D.
2
单选题
普通
12. (2020八下·广州月考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=4,P是AC上一动点,则PB+PE的最小值是( )
A.
6
B.
2
C.
8
D.
2
单选题
普通
二、填空题(共6题,共18分)
13. (2023八下·花都期末)如图,四边形
是菱形,对角线
与
相交于点O,请添加条件
,使得菱形
为正方形.(只能添加一个条件)
填空题
容易
14. (2022八下·斗门期末)如图,在正方形ABCD中,E是AD上一点、连接CE,交BD于点F,若AD=BF,则∠DEF=
°.
填空题
容易
15. (2017八下·潮阳期中)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=
度.
填空题
普通
16. (2024八下·越秀期中)如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为
度.
填空题
普通
17. (2024八下·珠海期末)如图,
,
是正方形
的对角线
上的两点,且
若正方形
边长为
,
, 菱形
的周长为
.
填空题
普通
18. (2023八下·惠东期末)如图,在正方形
中,点
是边
上一点,且
,
, 点
是边
上的动点(
与
,
不重合),则
的最小值是
.
填空题
普通
三、解答题(共5题,共45分)
19. (2024八下·海珠期中)在正方形
中,
为对角线,E为
上一点,连接
.
(1)
求证:
.
(2)
延长
交
于F,当
时,求
的度数.
解答题
普通
20. (2024八下·江门期中)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等,并说明理由.
解答题
普通
21. (2024八下·新会期中)如图,在
中,
的平分线交
于点D,
,
.
(1)
试判断四边形
的形状,并说明理由;
(2)
若
, 且
, 求四边形
的面积.
证明题
普通
22. (2024八下·中山期中)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.
(1)
求证:BE⊥AF;
(2)
如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.
解答题
普通
23. (2024八下·珠海期中)如图,在
中,
,
是
的中点,
是
的中点,过
点作
, 交
的延长线于点
, 连接
.
(1)
求证:四边形
是菱形;
(2)
当
时,四边形
是什么特殊的四边形?并说明理由;
(3)
若
,
, 则四边形
的面积是________.
解答题
普通